0%

CF1861F. Four Suits

挺好的一道网络流思维题

题意

给定\(n\le 5\cdot 10^4\)个人以及\(4\)种手牌,第\(i\)个人手上有\(a_{i,j}\)\(j\)类牌,另外有\(b_j\)\(j\)类牌没有发出去,保证\(n|\sum a_{i,j}+\sum b_j\),合法的发牌方式最后每个人牌数量相同。牌全部发完后每个人保留手上最多的那种牌记为\(c_i\),一种发牌方式对第\(i\)个人的贡献为\(\max\{0,c_i-\max_{j\neq i}c_j\}\),问每个人的贡献最大值为多少。

题解

考虑一个人怎么求,有朴素想法是枚举最后留下了第\(j\)种牌,那么显然第\(j\)种牌尽量多地发给他最优,然后使得其他人的最大值最小,于是二分答案,判定是否有发牌方案使得\(\max_{k\neq i}c_k\le x\)

这个是个经典匹配问题,左边\(n-1\)个点代表人,点权为每人剩下应该拿到的牌数量\(k-\sum a_{i,j}\),右边\(4\)个点代表牌的种类,点权为分配了第\(i\)个人后的\(b_j'\),两列点之间连边,边权为该位置最多发几张牌\(x-a_{i,j}\)

匹配问题等同于网络流,只要最大流等于左边点权和就代表有解,考虑最大流等于最小割,又右边点数量很少,我们只需要枚举割掉了右边的哪些点,之后对左边求一个类似\(\sum \min\{k-\sum a_{i,j},\sum x-a_{i,j}\}\)的式子,略微转化为\(\sum le_i+\min\{0,cx-u_i\}\)的形式,我们只需要按\(u_i\)排序就能在\(O(\log n)\)的时间内求出该和,也即求出最小割,总复杂度\(O(n\log n\log C)\)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
constexpr int N = 50100;

int n, a[N][4], all, b[4], le[N], lesum, u[16][N], sum[16];
int c[16], us[16][N], usum[16][N], ans[N], pmx[N], smx[N];
signed main() {
cin >> n;
for(int i = 1; i <= n; i++) {
for(int j = 0; j < 4; j++) {
cin >> a[i][j];
all += a[i][j];
pmx[i] = max(pmx[i], a[i][j]);
}
smx[i] = pmx[i];
pmx[i] = max(pmx[i - 1], pmx[i]);
}
for(int i = n; i; i--) smx[i] = max(smx[i + 1], smx[i]);
for(int j = 0; j < 4; j++) cin >> b[j], all += b[j];
all /= n;
for(int i = 1; i <= n; i++) {
le[i] = all;
for(int j = 0; j < 4; j++)
le[i] -= a[i][j];
lesum += le[i];
}
for(int s = 0; s < 16; s++) {
for(int i = 1; i <= n; i++)
u[s][i] = le[i];
sum[s] = c[s] = 0;
for(int j = 0; j < 4; j++) {
if(s >> j & 1) {
sum[s] += b[j];
} else {
c[s]++;
for(int i = 1; i <= n; i++) {
u[s][i] += a[i][j];
}
}
}
for(int i = 1; i <= n; i++)
us[s][i] = u[s][i];
sort(us[s] + 1, us[s] + n + 1);
usum[s][n + 1] = 0;
for(int i = n; i; i--) {
usum[s][i] = usum[s][i + 1] + us[s][i];
}
}
for(int i = 1; i <= n; i++)
for(int j = 0; j < 4; j++) {
int lo = max(pmx[i - 1], smx[i + 1]), hi = a[i][j] + min(le[i], b[j]), mid;
auto calc = [&](int x) {
int resmin = 1e9;
for(int s = 0; s < 16; s++) {
int id = upper_bound(us[s] + 1, us[s] + n + 1, c[s] * x) - us[s];
int res = (n - id + 1) * c[s] * x - usum[s][id];
assert(res <= 0);
res += lesum;
res += sum[s];
if(s >> j & 1) {
res -= min(le[i], b[j]);
}
res -= le[i];
res -= min(0ll, c[s] * x - u[s][i]);
resmin = min(resmin, res);
}
return resmin;
};
while(lo < hi) {
mid = lo + hi >> 1;
if(calc(mid) == lesum - le[i]) hi = mid;
else lo = mid + 1;
}
if(calc(lo) != lesum - le[i]) continue;
int to = a[i][j] + min(le[i], b[j]);
ans[i] = max(ans[i], to - lo);
}
for(int i = 1; i <= n; i++)
cout << ans[i] << " \n"[i == n];
return 0;
}

jls太强辣